Matemática no Enem – Compreenda os Números Complexos

Nos vestibulares e caderno de Matemática do Enem os números complexos são muito cobrados, pois possuem grande aplicação, não sendo utilizados apenas em matemática, muitas vezes também para solução de problemas na física e com certeza devem estar entendidos para garantir pontos preciosos!

Os números complexos são números escritos na forma z = x + yi (forma cartesiana ou retangular) e utilizados para resolver raízes de índices pares com números negativos dentro delas.

O “i” é chamado de unidade imaginária e tem propriedade:

i2 = −1

Sabemos que:

i0 = 1
i1 = i

E a partir da propriedade chegamos em:

i3 = i2 x i1 = −i
i4 = i2 x i2 = 1
i5 = i4 x i1 = i

Calculando para in, sendo n um número natural

As potências se repetem de 4 em 4, assim, para saber quanto vale in, basta dividir n por 4 e
encontrar o resto, elevando i ao resto encontrado podemos saber quanto vale ݅in de forma mais simplificada.

Exemplo:

Qual o valor de i7626?

Dividimos 7626 por 4 e obtemos o resto 2, i7626 = i2 = 11;

O x é a parte real do número imaginário e y é a parte imaginária:

x = Re(z) e y = Im(z)

numeros_complexos

Em um plano de coordenadas cartesianas o eixo x (Abscissa) é chamado de eixo real enquanto o eixo y (Ordenada) é chamado de eixo imaginário.

O módulo de um número complexo é dado por:

modulo_complexo

Igualdade de Complexos

Dois números complexos só podem ser considerados iguais se a parte real de um for igual à parte real do outro e se a parte imaginária de um for igual à parte imaginária do outro.

Exemplo:

Z ,R e P são números complexos tais que:

Z = 3 + 2i;
R = 2 + 3i;
P = 3 + 2i;

Z e P são considerados iguais, R e P não são considerados iguais e Z e R também não são considerados iguais.

Conjugado

O conjugado de um número complexo é representado por z.

O conjugado de z = x + yi:

z = x – yi

Exemplo:

z = 3 + 2i, o conjugado de z é z = 3 – 2i.

Oposto

O oposto de um número complexo z é -z, ou seja, se z = x + yi, o seu oposto é:

-z = -x – yi

Exemplo:

z = 3 + 2i, o oposto de z é -z = – 3 – 2i.

0 Shares:
1 comment
Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *


You May Also Like